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A B S T R A C T   

Seagrass ecosystems usually respond in a nonlinear fashion to increasing pressures and environmental changes. 
Feedback mechanisms operating at the ecosystem level and involving multiple interactions among the seagrass 
meadow, its associated community and the physical environment are known to play a major role in such 
nonlinear responses. Phenotypic plasticity may also be important for buffering these ecological thresholds (i.e., 
regime shifts) as many physiological processes show nonlinear responses to gradual environmental changes, 
conferring the appearance of resistance before the effects at the organism and population levels are visible. 
However, the potential involvement of plant plasticity in driving catastrophic shifts in seagrass ecosystems has 
not yet been assessed. In this study, we conducted a manipulative 6-month light-gradient experiment in the field 
to capture nonlinearities of the physiological and population responses of the seagrass Cymodocea nodosa to 
gradual light reduction. The aim was to explore if and how the photo-acclimatory responses of shaded plants are 
translated to the population level and, hence, to the ecosystem level. Results showed that the seagrass population 
was rather stable under increasing shading levels through the activation of multilevel photo-acclimative re
sponses, which are initiated with light reduction and modulated in proportion to shading intensity. The acti
vation of photo-physiological and metabolic compensatory responses allowed shaded plants to sustain nearly 
constant plant productivity (metabolic carbon balance) along a range of shading levels before losing linearity and 
starting to decline. The species then activated plant- and meadow-scale photo-acclimative responses and drew on 
its energy reserves (rhizome carbohydrates) to confer additional population resilience. However, when the 
integration of all these buffering mechanisms failed to counterbalance the effects of extreme light limitation, the 
population collapsed, giving place to a phase shift from vegetated to bare sediments with catastrophic ecosystem 
outcomes. Our findings evidence that ecological thresholds in seagrass ecosystems under light limitation can be 
explained by the role of species’ compensatory responses in modulating population-level responses. The 
thresholds of these plastic responses anticipate the sudden loss of seagrass meadows with the potential to be used 
as early warning indicators signalling the imminent collapse of the ecosystem, which is of great value for the real- 
world management of seagrass ecosystems.   

1. Introduction 

Exposed to increasing environmental stress, ecosystems may un
dergo precipitous declines with potentially catastrophic consequences 
for their ecosystem services. While some systems show predictable de
clines in ecosystem state as conditions deteriorate, others may show 
remarkable resistance to stressful conditions before declining abruptly 

and without much prior warning. Managing these ecosystems presents a 
special challenge since most standard metrics of ecological health would 
not detect an approaching transition. This can be especially problematic 
if ecosystems show alternate stable states, where a series of ecological 
feedbacks prevent a quick recovery even after environmental conditions 
have improved. A wide range of terrestrial, freshwater and marine 
ecosystems respond to gradual environmental changes, showing 
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alternative stable state dynamics (Scheffer, 2001). These regime shifts 
involve a persistent change in the structure and dynamics of the system 
and usually lead to drastic changes in the provision of ecosystem ser
vices (Hilt et al., 2017; Möllmann et al., 2015). Regardless of whether 
systems show alternate stable states or not, identifying early-warning 
signals of approaching thresholds has direct application to the 
real-world management of ecosystems that show non-linear dynamics. 
An unchanging and seemingly resistant ecosystem state could mask 
numerous underlying physiological and metabolic changes in the 
dominant structural species as it does its best to cope with declining 
environmental conditions. To maintain their ecological state, species 
may be able to optimise their energetic allocations between mainte
nance, growth and reproduction to overcome difficult conditions. Spe
cies may also have several inherent strategies to acclimate to the new 
conditions by modifying their physiological, morphological or structural 
traits. There is, of course a natural limit to these coping mechanisms; 
beyond a disturbance threshold or if the disturbance persists for too 
long, species tolerance may no longer be sufficient to maintain ecolog
ical states, leading to precipitous ecological declines. Understanding 
these tolerance mechanisms is the key to be able to anticipate an 
approaching threshold so that ameliorative action can be taken before 
an ecological transition occurs. 

In ecosystems dominated by a few foundational species, the structure 
and functioning of the entire system is closely tied in with the responses 
of these species (Ellison et al., 2005; Thomsen et al., 2010; Connell et al., 
2017). How ecosystems respond to increasing stress will depend on the 
phenotypic plasticity of their dominant species to buffer change 
(Monaco and Helmuth, 2011; Clements and Ozgul, 2018; Pazzaglia 
et al., 2021). Many physiological processes show nonlinear responses to 
gradual environmental changes, conferring the appearance of resistance 
(i.e., homeostasis) before the effects at the organism and population 
levels are visible (Laakso et al., 2003; Dorey et al., 2013; Hennon et al., 
2019). Large-scale ecosystem shifts are therefore likely to occur if any 
structural species in the ecosystem is sensitive to an environmental 
factor that varies around a critical range (Jeppesen et al., 2007). Iden
tifying the underlying physiological parameters of these responses may 
help assessing the risk of an approaching threshold, making them 
potentially powerful early warning indicators (Connel and Ghedini, 
2015). To date, however, few studies have incorporated species physi
ological performance and phenotypic plasticity of constituent organisms 
in predicting and managing ecosystem resilience (Harley et al., 2017; 
Dakos et al., 2019). 

As foundation species, seagrasses have colonised most coastal areas 
worldwide, where they strongly influence the structure and function of 
littoral ecosystems. Seagrass meadows are one of the most valuable 
ecosystems on earth due to their critical contributions to people, 
including nutrient cycling and coastal water quality control, among 
others (Costanza et al., 2014; Nordlund et al., 2016). Such meadows are 
experiencing a global decline as a result of human activities, with 
eutrophication and climate change as the major causes of seagrass 
disappearance (Waycott et al., 2009; Orth et al., 2006; Unsworth et al., 
2019). Abrupt shifts in seagrass ecosystems following extreme weather 
events have been documented over recent decades (i.e., marine heat
waves; Seddon et al., 2000; Fraser et al., 2014; Thomson et al., 2015; 
Shields et al., 2019) as well as with increased coastal inputs of nutrients 
(Gurbisz et al., 2014; Kemp et al., 2005; Robertson and Savage, 2020). 
With eutrophication, seagrasses are exposed to increasing light stress. 
Several studies have identified the feedback among seagrass, sediment 
and light as a complex interacting mechanism with the potential to 
induce abrupt shifts in seagrass ecosystems (Adams et al., 2016; Carr 
et al., 2010; Maxwell et al., 2016). By controlling nutrient levels in the 
water column and stabilising sediments, seagrasses enhance the avail
ability of light for their growth, creating a self-facilitating environment 
(van der Heide et al., 2007, 2011). However, when eutrophication 
persists and nutrient loads continue to increase, seagrasses may sud
denly decline as a result of complex ecosystem responses including 

increased turbidity, algal blooms and epiphyte loads (Ralph et al., 2007; 
Cabaço et al., 2013). The severe light limitation that characterises these 
conditions is a major cause of seagrass decline under eutrophication (e. 
g., Hauxwell et al., 2003; Burkholder et al., 2007). Climate change is 
likely to worsen these conditions by increasing the interaction among 
stressors, further reducing the amount of light seagrass meadows receive 
(Short and Neckles 1999; Duarte et al., 2013; Pazzaglia et al., 2020). 
These impacts are likely to be particularly acute in sheltered and 
semi-enclosed water bodies (Lloret et al., 2008; Le Fur et al., 2019). 
Climate-driven changes in rainfall patterns, storm activity and coastal 
currents are enhancing terrestrial runoff, coastal erosion and sediment 
resuspension, increasing water turbidity and increasing overall light 
stress on seagrasses. Light limitation is therefore an increasing threat to 
marine plants, likely to be responsible for triggering abrupt shifts in 
seagrass ecosystems and furthering their global decline (e.g., Shields 
et al., 2019; Ralph et al., 2007; Short and Neckles 1999; McMahon et al., 
2013). 

The photo-physiology of seagrasses dealing with light limitation 
often follows complex and nonlinear responses (e.g., Hedley et al., 2014; 
Olesen et al., 2002; Collier et al., 2009; Dattolo et al., 2017). It is likely 
that plant physiological responses play a role in large-scale ecosystem 
transitions. Thus far however, little is known of how these physiological 
parameters drive ecosystem conditions and if these can be used as 
early-warning indicators of population- and ecosystem-level collapse. In 
this study, we used a controlled field experiment to explore the 
photo-physiological responses of seagrass to reducing light. We 
hypothesise that thresholds of seagrass decline are explained, at least in 
part, by nonlinearities in how light reduction translates to physiological 
and plant fitness responses and how these drive subsequent population 
dynamics that affect ecosystem-level patterns. We used a manipulative 
light-gradient experiment in the field to determine the physiological and 
population responses of the seagrass Cymodocea nodosa to gradual light 
reduction (Kreyling et al., 2018) and to explore if and how the physi
ology of shaded plants translates to changes at the population and the 
ecosystem level. Population changes (shoot density and plant biomass) 
were followed for the 6-month duration of the experiment to charac
terise nonlinear population responses and to determine the level of light 
reduction inducing abrupt population decline. Morphological, (photo-) 
physiological and plant fitness responses were also analysed after 2 
months of experimental shading to detect and quantify nonlinear trait 
responses that may underlie subsequent population collapse and abrupt 
ecological transitions. These responses normally occur in a matter of a 
few weeks, whereas responses at the meadow-scale (i.e., biomass or 
shoot density) typically take longer, within a time scale of several 
months (McMahon et al., 2013). In addition, we use our results to 
describe potentially useful early warning indicators of rapid change in 
seagrass systems. 

2. Material and methods 

2.1. Study species and experimental design 

The seagrass Cymodocea nodosa is a species characteristic of shallow 
bays where light regimes are highly dynamic and can also colonise and 
thrive in deep waters (Borum and Greeve, 2004; Green and Short, 2003). 
The ability of the species to survive and succeed across a wide range of 
habitats with contrasting light conditions is likely linked to a suit of 
photo-acclimative responses acting at different levels of biological 
organisation (Olesen et al., 2002; Olivé et al., 2013; Schubert et al., 
2018; Silva et al., 2013). However, the seagrass has recently suffered 
sudden loses in the wake of a gradual episode of eutrophication, indi
cating that it has strong non-linear responses to declining light (Mar 
Menor coastal lagoon, Torrente et al., 2019). 

We conducted a field-based light-gradient experiment in 2018 in a 
homogenous, monospecific C. nodosa meadow (average shoot density ±
SE: 601 ± 45 shoots m− 2) growing on sandy sediments at 1 m depth in 

L. Marín-Guirao et al.                                                                                                                                                                                                                         



Marine Environmental Research 177 (2022) 105636

3

the Mar Menor coastal lagoon (SE Spain; 37◦ 46′ 49′′ N/0◦ 45′ 44′′W). 
We used a gradual light shading experiment with a total of nine condi
tions to detect potential non-linearities in the plants’ photo-acclimative 
responses to light. We chose a gradient approach to detect ecologically 
important thresholds and non-linear relationships (Kreyling et al., 2014, 
2018). The experiment was conducted from late spring (May) to late 
autumn (November) to encompass the seasonal growth cycle of the 
species in this region (Terrados and Ros, 1992). Nine light treatments 
(L1–L9) were selected to encompass a broad range of light availabilities, 
from natural light condition (L1 = 0% light reduction) to a highly 
intense shading treatment (L9 = 94% of light reduction). Neutral 
shading screens (1.2 × 1.2 m) were randomly allocated within the 
seagrass bed to reproduce the selected light conditions. Preliminary 
studies showed that these structures do not alter the physico-chemical 
conditions of the bottom, minimising the likelihood of experimental 
artifacts or any factor other than light (Bernardeau-Esteller et al., 2015). 
Shading screens were periodically cleaned (every 1–2 weeks) to main
tain consistent light treatments throughout the experimental period. A 
40 × 40-cm plot fixed to the seabed below each shading screen was used 
to monitor C. nodosa responses to imposed light treatments. The vege
tation surrounding the plots was removed to avoid clonal integration 
and resource translocation between experimental plants within the plots 
and plants growing outside the shaded area (Ruocco et al., 2021; Tuya 
et al., 2013). The light field in each treatment was continuously recorded 
using PAR light sensors (spherical quantum sensors, Alec MDS MK5). 
Sensors were installed at the top of the canopy in experimental plots, and 
instantaneous irradiance measurements were recorded every 10 min. To 
calculate the percentage of subsurface irradiance (%E0) reaching the 
seagrass canopy in each experimental light treatment, another PAR 
sensor was also installed just below the seawater surface to characterise 
subsurface irradiance (E0) throughout the experiment. Sediment redox 
potential was determined in each experimental plot at the end of the 
experiment to characterise treatment-induced changes in the reducing 
conditions of sediments. Measures were taken in three sediment samples 
(i.e., upper 10 cm below the sediment-water interface) from each plot, 
using a Crison Pt electrode connected to a portable pH meter (Crison 
model 507). The electrode was calibrated with a redox standard solution 
(Crison 468 mv at 25 ◦C), and redox measurements were referred to the 
standard hydrogen electrode (207 mV) as described in APHA (1992). 

2.2. Photo-physiological responses 

Photo-physiological C. nodosa responses were analysed after 2 
months of experimental shading to detect and quantify any potential 
nonlinear trait responses underlying subsequent population collapse and 
ecological abrupt phase transition. Maximum photosynthetic rates and 
respiratory rates (μmol O2 g− 1 FW h− 1) were measured for five plants 
from each light treatment, using an incubation chamber with a Clark- 
type O2 electrode (Hansatech, UK) and following the methods 
described in Marín-Guirao et al. (2011). In all incubations, the central 
part (about 0.6 cm2) of the first mature leaf was used to standardize the 
measurements. Incubations consisted of a 10-min dark exposure fol
lowed by a 7-min exposure to nine increased irradiances (from 5 to 900 
μmol quanta m− 2 s− 1) and a final 10-min exposure to darkness to 
determine dark respiration (Rd). Increases in oxygen were measured for 
each incubation interval and plotted against their respective irradiance 
values to construct the photosynthesis-irradiance curve (P-E curve). 
Maximum net photosynthetic rates (net-Pmax) were determined by 
averaging the maximum values and gross photosynthesis (gross-Pmax) 
was then calculated as the sum of net-Pmax and Rd. Saturation irradiance 
(Ek) was calculated as the ratio Pmax/α; where α (photosynthetic effi
ciency) was calculated as the slope of the regression line fitted to the 
initial linear part of the P-E curve and the compensation irradiance (Ec) 
as the intercept on the X-axis. 

Pigment content was analysed in the same five plants employed in 
photosynthetic incubations. Pigments were extracted by homogenising 

leaf tissues in buffered acetone (80%) and maintained overnight at 4 ◦C 
to ensure complete tissue disaggregation. After sample centrifugation 
(10 min at 1000 g), absorbance of supernatants was measured at 470, 
646, 663 and 725 nm to calculate chlorophyll a and b, according to 
Lichtenthaler and Wellburn (1983), and expressed as per leaf biomass 
(μg g− 1). 

2.2.1. Net carbon balance 
The daily metabolic carbon balance (CB) and the daily period of 

irradiance-saturated photosynthesis (Hsat) were selected as proxies of 
plant productivity (Denisson and Alberte, 1982, 1985; Alcoverro et al., 
1999; Lee and Dunton, 1996; Touchette and Bulkholder, 2000). Daily 
carbon balance was estimated using the function [P = [gross-Pmax E/(E 
+ Ek)] + Rd (Baly, 1935)], as described in Marín-Guirao et al. (2015), 
where P is the net photosynthesis, gross-Pmax is the maximum gross 
photosynthetic rate, E is the irradiance measured in each experimental 
light treatment, Ek is the saturation irradiance and Rd is dark respiration. 
The function integrates the photosynthetic parameters obtained in the 
incubations (P-E curves) and the continuous recordings of irradiance 
obtained in light treatments to generate estimates of net production, 
which were integrated across 24-h periods to yield daily net production 
values. Finally, net productivity in oxygen units was multiplied by 0.375 
to obtain the equivalent carbon units (mg C g− 1 FW d− 1) since the 
photosynthetic quotient is assumed to equal unity, and the ratio g C: g 
O2 = 0.3 (Matta and Chapman, 1991). This calculation presumes con
stant dark respiration through the day and does not consider other 
carbon losses (exudation, grazing) or gains (light-independent carbon 
fixation). Mean daily saturation periods (Hsat), i.e., the proportion of the 
day that light intensities saturated photosynthesis (Dennison and 
Alberte, 1985), were calculated for each treatment by averaging the 
number of hours per day that irradiance values exceeded the corre
sponding values of saturation (Ek) irradiances. The Ek values used in 
these calculations were those obtained from the P-E curves. 

2.3. Plant fitness and morphological responses 

The energy status of plants was characterised by analysing the total 
carbohydrate content in plant storage tissues (i.e., rhizomes) and used to 
assess plant fitness (Govers et al., 2015). Analyses were conducted 
following the anthrone assay as described in Marín-Guirao et al. (2013). 
Three samples from each shading treatment, each composed of pooled 
rhizome tissues of three shoots, were analysed. Plant height was 
measured after 2 months of experimental shading in five plants, 
randomly selected from each experimental shading treatment, to char
acterise morphological changes in response to light deprivation. 

2.3.1. Population responses 
Shoot density was monitored for the 6-month duration of the 

experiment to characterise nonlinear population responses and the level 
of light reduction at which the C. nodosa population abruptly declined. 
The number of shoots was recorded by scuba divers in each experi
mental plot every 1 or 2 weeks for the duration of the experiment. At the 
end of the experiment, all plant material was harvested and dried to 
constant weight to determine total plant biomass. 

2.4. Statistical analysis 

The identification of breakpoints (i.e. thresholds) in the responses of 
C. nodosa to light reduction was carried out by piecewise linear 
regression using SegReg (http://www.waterlog.info/segreg.htm). 
Segmented/piecewise regression is an effective statistical tool for 
modeling abrupt thresholds in ecological data (Toms and Lesperance, 
2003; Ramsey et al., 2003; Rotvit and Jacobsen, 2013). The method uses 
an algorithm that tests multiple data fits to locate the best breakpoint 
that maximizes the statistical coefficient of explanation. The analysis 
also includes a significance test (ANOVA) to determine whether the 
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breakpoint gives a significant additional explanation compared to 
straightforward linear regression. 

3. Results 

3.1. Experimental light gradient 

The nine experimental light treatments produced a consistent light 
gradient over the course of the experiment, ranging from an averaged 
(±SD) daily photosynthetic flux density of 27.43 (±7.2) mol quanta m− 2 

d− 1 in the L1 treatment (i.e., 0% light reduction) to 1.63 (±1.2) mol 
quanta m− 2 d− 1 in the most intense shading treatment L9 (Fig. 1). The 
percentages of light reduction in each treatment with respect of natural 
light levels were 0, 18, 43, 56, 64, 66, 78, 87 and 94% from the least to 
the most intense shading treatments. These values corresponded 
respectively to 74, 60, 42, 32, 26, 25, 16, 10 and 4% subsurface irra
diance (E0). 

At the end of the experiment, the sediment redox potential in 
experimental plots did not show any clear pattern across the light 
gradient (Supplementary Table S1). Values ranged between − 144.9 ±
51 mV in the L1 treatment to − 247.7 ± 38 mV in the L4 treatment, with 
an average (±SD) value of-196.4 ± 33 mV for all nine light treatments. 

3.1.1. Patterns of photo-physiological responses to gradual light reduction 
The photo-physiological response of plants to light reduction showed 

a nonlinear pattern for all photosynthetic variables, with breakpoints 
between 52.6 and 64.9% of light reduction (p < 0.05; Table 1; Fig. 2). 
Gross photosynthetic rates (Pmax) were almost constant from full light 
(0% of shading) up to the breakpoint of 52.6% of irradiance (slope: 
− 0.020), after which Pmax began to drop steeply with a trend that was 56 
times greater (slope: − 1.128). Respiratory rates of plants also displayed 
a nonlinear response and a breakpoint at 56.4% of shading intensity (p 
= 0.003; Table 1; Fig. 2b). Respiration showed a biphasic response with 
average respiratory rates (±SE) before and after the breakpoint of 18.5 
± 0.2 and 13.5 ± 0.5 μmol O2 g− 1 FW h− 1, respectively. Compensation 
irradiance (Ec) and saturating irradiance (Ek) both showed a breakpoint 
once again at 56.4% of light reduction (Table 1; Fig. 2c and d). Averaged 
Ec values (±SE) before and after the cut-off point were 13 ± 0.6 and 7 ±
0.2 μmol quanta m− 2 s− 1, respectively, whereas the corresponding 
values for Ek were 64 ± 4 and 41 ± 2 μmol quanta m− 2 s− 1. The 
photosynthetic quantum efficiency (α) also responded to gradual 
shading in a nonlinear response fashion and showed a breakpoint 
somewhat later, at 64.9% of light reduction (Table 1; Fig. 2e). The ef
ficiency of experimental plants progressively increased before the 
breakpoint (from 1.3 ± 0.17 to 1.66 ± 0.17 μmol O2 g− 1 FW h− 1/μmol 
quanta m− 2 s− 1) and jumped to a higher stable level (1.92 ± 0.04 μmol 
O2 g− 1 FW h− 1/μmol quanta m− 2 s− 1) beyond that point. 

The analysis also identified a nonlinear response pattern to light 

reduction for chlorophyll a and chlorophyll b (Supplementary Fig. S1), 
with a breakpoint at 85.5% of light reduction (p < 0.01; Table 1). 
Photosynthetic pigments linearly increased with shading up to the 
breakpoint, but further light reductions caused stronger chlorophyll 
increments for plants from the most intense treatment, showing leaf Chl 
a and Chl b concentrations 62% and 81% higher than those of plants 
under full sunlight, respectively. 

3.2. Pattern of net carbon balance to gradual light reduction 

The daily metabolic carbon balance (CB) and the daily period of 
irradiance-saturated photosynthesis (Hsat) showed nonlinear responses 
to increasing shading, with breakpoints at 72.4% and 82.7% light 
reduction, respectively (Table 1; Fig. 3). The CB of shaded plants 
decreased slightly with increasing shading before the breakpoint. 
Beyond that level, however, further shading produced a sharp CB 
decrease with a slope that was seven times higher than that observed 
before the breakpoint (Fig. 3). The CB values in the three most intense 
shading treatments (i.e., 78, 87 and 94% light reduction) were, 
respectively, 44, 71 and 98% lower than those of plants in the ambient 
light treatment with no shading. Similarly, Hsat was almost unaffected 
up to the 78% light reduction treatment, with values ranging from 11.4 
to 10.1 h. Further shading caused more drastic reductions, and under the 
most intense shading treatment, Hsat was shorter than 5 h. 

3.3. Patterns of rhizome carbohydrates and plant morphological 
responses to gradual light reduction 

The energetic status of experimental plants (i.e., rhizome content in 
total non-structural carbohydrates, TNC) also showed a non-linear 
response to progressive light reduction, with a breakpoint, identified 
by piecewise linear regression, at 78% light reduction (p = 0.01; Table 1; 
Fig. 4). The TNC decreased linearly up to the breakpoint (from 21 to 
12% of rhizome dry weight), but beyond that point, TNC decreased more 
steeply, resulting in carbohydrate levels lower than 6% of dry weight. 

At the morphological level, the height of C. nodosa plants also 
responded in a non-linear fashion to gradual shading, with a breakpoint 
identified at 66.8% of light reduction (Supplementary Fig. S2; Table 1). 
Plants from the most intense shading treatments (i.e., those beyond the 
breakpoint: 78, 87 and 94% of light reduction) were twice as high as 
plants under full sunlight and 66% higher than the average of the 
treatments before the breakpoint (31.8 ± 1.0 vs 19.1 ± 0.7). 

Fig. 1. Integrated daily photosynthetic flux density recorded in the nine 
experimental light treatments during the course of the experiment. 

Table 1 
Results from the sequential analysis (Rodionov, 2004) and Chow test for the 
identification of cut-off points in the multilevel response of C. nodosa to gradual 
light reduction. n.s. non-significant Chow test. * The Chow test cannot be per
formed when just one treatment is included in one of the two groups identified 
by the Rodionov sequential analysis.  

Response 
level 

Variable Breakpoint ANOVA 

(% light 
reduction) 

(p- 
value) 

Physiology Gross photosynthesis (gross-P) 52.6 0.004 
Respiration (Rd) 56.4 0.003  
Compensation point (Ec) 56.4 0.043  
Saturating point (Ek) 56.4 0.001  
Photosynthetic efficiency (α) 64.9 0.024  
Chlorophyll a 85.5 0.008  
Chlorophyll b 85.5 0.001 

Productivity Daily carbon balance (CB) 72.4 0.001  
Daily saturation period (Hsat) 82.7 0.001 

Fitness Total non-structural 
carbohydrates (TNC) 

78.0 0.010 

Morphology Plant height 66.8 0.013 
Population Total biomass 65.8 0.008  

Shoot density 86.5 0.024  
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3.4. Pattern of population responses to gradual light reduction 

Total plant biomass responded in a nonlinear fashion to gradual 
shading and exhibited a breakpoint at 65.8% light reduction at the end 
of the experimental shading period (Table 1; Fig. 5). Total biomass 
before the breakpoint (87.4 ± 5.5 g DW m− 2) was, on average, almost 
twice as high as the biomass of treatments after the breakpoint (46.0 ±
6.2 g DW m− 2). 

The evolution of net shoot change in light treatments through the 

Fig. 2. Gross photosynthetic rates, Pmax (a), respiratory rates, Rd (b), 
compensation irradiance, Ic (c), saturating irradiance, Ek (d) and photosynthetic 
quantum efficiency, α (e) of C. nodosa plants after 2 months of experimental 
shading. Dashed vertical lines in red indicate the breakpoints detected in 
piecewise linear regressions using all samples (grey dots; n = 5). Black dots 
represent the average value for each light treatment. Solid black lines represent 
the linear regression of treatments before and after the breakpoint and dashed 
grey lines the 95% confidence bands; regression equations are shown in 
the graph. 

Fig. 3. Daily metabolic carbon balance (CB; upper panel) and daily light 
saturation period (Hsat; lower panel) of experimental plants along the gradient 
of light reduction. Values represent the integration of the photo-physiological 
measurements with the continuous light recordings of the previous two 
months. Dashed vertical lines in red indicate the breakpoints detected in 
piecewise linear regressions using all samples (grey dots; n = 5). Black dots 
show the average value for each light treatment. Solid black lines represent the 
linear regression of treatments before and after the breakpoint and dashed grey 
lines the 95% confidence bands; regression equations are shown in the graph. 

Fig. 4. Total non-structural carbohydrate content in rhizomes of experimental 
plants along the light reduction gradient. Vertical dashed line in red indicates 
the breakpoint detected in the piecewise linear regression using all samples 
(grey dots; n = 3). Black dots represent the average value for each light 
treatment. Solid black lines represent the linear regression of treatments before 
and after the breakpoint and dashed grey lines the 95% confidence bands; 
regression equations are shown in the graph. 
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course of the experiment is shown in Supplementary Fig. S3. In contrast 
to the most intense shading treatment, in which shoot density decreased 
dramatically during the experiment, the evolution of net shoot change in 
the other treatments remained relatively stable. At the end of the 6- 
month experimental period, shoot density in experimental plots 
showed a breakpoint at 86.5% light reduction (Table 1, Fig. 5). Shoot 
density linearly decreased with increasing shading, suffering 35% 
reduction from the treatment without shading to the severe treatment of 
the breakpoint (from 542 to 350 shoots m− 2). Beyond that point, how
ever, shoot density drastically dropped by about 90%. 

4. Discussion 

Several underlying photo-acclimative mechanisms explain the 
extraordinary resilience of Cymodocea nodosa to extreme light limita
tion, allowing the plant to resist a 80–90% light reduction before an 
abrupt decline in the population. These underlying mechanisms are 
manifested long before changes become evident at the population level 
(i.e., shoot density). As light reduces, it triggers a series of non-linear 
physiological and morphological feedbacks that serve to maintain a 
stable carbon balance even when the light reaching the plant had 
reduced to half. The plant appears to do this by increasing its photo
synthetic efficiency, with a simultaneous reduction in respiration. As 
light decreased even further, plants resorted to expending their ener
getic reserves to counterbalance carbon limitation, and it is only when 
those reserves were drastically reduced that abrupt population-level 
effects were seen. Taken together, these changes in plant performance 
can be considered as physiological compensatory processes for resisting 
ecological thresholds (sensu Connell and Ghedini, 2015) and provide a 
mechanistic explanation for the catastrophic decline C. nodosa shows to 
extreme light reduction. They serve as a series of progressive warnings of 
impending collapse that may be much more powerful indicators than 
standard ecosystem- and population-level state variables, whose 

remarkable stability may mask dramatic changes in ecosystem health. 
Maintaining carbon balance is critical for plant survival, and 

C. nodosa shows considerable physiological and morphological plasticity 
to ensure it is kept stable under increasing shading levels. The plant 
employs a series of regulatory feedback mechanisms to maintain plant 
efficiency before dipping into its energetic stores. Shaded plants were 
able to maintain their photosynthetic rates at low to moderate light 
reduction (0–53%; Fig. 2), with an improved light capture efficiency 
promoted by increased chlorophyll biosynthesis (Supplementary Fig. 2S; 
Mc Mahon et al., 2013; Lee et al., 2007). Further shading, however, 
progressively reduced plant photosynthesis despite photosynthetic pig
ments continuing to increase. Beyond a certain point, further pigment 
production may not confer any additional efficiency because of pigment 
self-shading – called the package effect, which describes a loss of line
arity between light absorption efficiency and pigment concentrations 
(Cummings and Zimmerman, 2003; Enríquez, 2005). As photosynthesis 
began to decline beyond 53% light reduction, the respiratory activity of 
shaded plants declined sharply (ca. 30%) as a likely compensatory 
metabolic response to light deprivation (Noguchi, 2005; Touchette and 
Burkholder, 2000). This response, together with the increase in pig
ments, favoured the enhancement of the photosynthetic quantum effi
ciency (α) of shaded plants and the reduction of their light compensation 
(Ec) and light saturating (Ek) points (Falkowski and Raven, 2007). 
Thanks to the integration of these photo-physiological and metabolic 
adjustments, overall plant productivity (i.e., the proxies CB and Hsat) 
remained relatively unchanged even when light was reduced to one 
third (Dennison and Alberte 1982, 1985; Zimmerman et al., 1995). It 
was only at further shading levels (i.e., 73–83% light reduction) that the 
plant carbon balance declined abruptly. 

Coinciding with the reduction in the plant carbon balance (i.e., CB), 
the population showed a substantial reduction in standing biomass at 
the same time as plants became increasingly taller as shoots grew to
wards the water surface to find a more favourable light environment for 
photosynthesis (Ralph et al., 2007). The reduction in seagrass biomass, 
promoted mainly by belowground biomass losses, is a fundamental 
structural response at the meadow level to cope with decreasing irra
diances since it facilitates functional adjustments in whole-plant carbon 
balances (Collier et al., 2007; Enríquez et al., 2019; Olesen et al., 2002). 
In addition, the population also shows a gradual decline in shoot den
sity, which is another key long-term response to light reduction at the 
meadow scale potentially serving to reduce leaf self-shading and facili
tating light penetration within the seagrass canopy (Collier et al., 2007; 
Dalla Via et al., 1998; Enríquez et al., 2019; Enríquez and Pantoja-Reyes, 
2005; Mackey et al., 2007; Olesen et al., 2002). These modifications at 
the level of plant architecture and meadow structure would help to 
partially offset the impact of severe low-light stress and the maintenance 
of relatively dense populations. 

Because all these photo-acclimative responses are not completely 
effective under such intense shading conditions, C. nodosa also falls back 
on its energy reserves to make up for the abrupt decline in carbon gains. 
The carbohydrate content in plant rhizomes decreased gradually with 
shading, and it is only beyond that intense shading level (i.e., 78% light 
reduction), that the plant registers a sharp drop, signalling a collapse in 
its energy stores. Dipping into rhizome reserves is costly since this has 
direct consequences for plant fitness and survival (Touchette and Bur
kholder, 2000). It is clearly a mechanism of the last resort but enables 
C. nodosa to maintain its shoot density in much more light-limited 
conditions than multilevel photo-acclimative feedback mechanisms 
alone would allow. Beyond this point, C. nodosa suffers from starvation 
and shoot density eventually collapses. Remarkably, this occurs when 
light is practically absent – with a 95% reduction of ambient light levels. 
Taken together, this series of resistance mechanisms may explain the 
extraordinary success of C. nodosa in the different light regimes in which 
it is found, from shallow highly lit waters to deep, light-limited envi
ronments and in estuaries where light conditions can change dramati
cally (e.g., Belando et al., 2021; Pérez and Romero, 1994; Silva et al., 

Fig. 5. Total plant biomass (upper panel) and shoot density (lower panel) along 
the experimental light gradient at the end of the experiment. Dashed vertical 
lines in red indicate the breakpoints detected in the piecewise linear regressions 
using all samples (grey dots; n = 3). Black dots represent the average value for 
each light treatment. Solid black lines represent the linear regression of treat
ments before and after the breakpoint and dashed grey lines the 95% confi
dence bands; regression equations are shown in the graph. 
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2013). 
Despite this resistance, the decline of the C. nodosa ecosystem, when 

it occurs, is abrupt and unpredictable. The recent ecosystem-wide 
collapse of C. nodosa meadows in the Mar Menor is a classic case in 
point, where several months of severe light limitation led to the wide- 
spread loss of seagrass meadows (Pérez-Ruzafa et al., 2019; Torrente 
et al., 2019) which had remained stable during previous decades under 
increasing eutrophication pressure (Belando et al., 2021). Predicting 
such imminent ecosystem collapses has been a challenge for ecology and 
ecosystem management. When complex systems show abrupt transi
tions, the consequences of state changes can be far-ranging and some
times permanent. The last two decades have seen a growing interest in 
identifying reliable signals of an impending collapse, linked to subtle 
changes observed in key state variables including increased variance, 
flickering, etc. (Dakos et al., 2013). Importantly, most of these critical 
transition indicators are phenomenological rather than mechanistic. In 
the case of C. nodosa, its photo-acclimative responses to light reduction 
represents a clear set of compensatory mechanisms and plant responses 
that, together, lead to a nonlinear transition in ecosystem state. The 
progressive photo-acclimative changes and fitness responses represent a 
series of step changes in overall plant performance that eventually 
translate into dramatic shifts in the population. The abrupt change in the 
population seen at extreme low light levels is a function of the abrupt 
changes observed in the carbon balance. This mechanism may also have 
been at work in the nutrient-enrichment experiments by Connel et al. 
(2017), which showed similar thresholds in the seagrass Amphibolis 
antartica, most likely as a result of shading caused by epiphyte 
overgrowth. 

Having identified mechanisms to explain abrupt transitions, it is 
possible to anticipate their eventual decline and to plan ameliorative 
actions. For seagrass managers, these could represent progressive 
thresholds that presage an ecosystem collapse (Fig. 6). With a linear 
decline in light conditions, C. nodosa shows staged responses, each 
defined by marked thresholds. Starting with physiological thresholds 
(photosynthesis and respiration), the species then responds with a 
threshold in plant fitness (carbohydrate reserves in rhizomes) and in the 
standing biomass of the meadow, followed by a population threshold 
(shoot density). Beyond this point, the population and the ecosystem 
itself experiences a dramatic collapse. While it was beyond the scale of 
this experimental study, recent observations in the Mar Menor coastal 
lagoon indicate that seagrass loss can result in a transition from a clear, 
macrophyte-dominated state to a turbid, phytoplankton-dominated 
state. Identifying similar thresholds for other macrophyte species may 
considerably advance our ability to manage these systems against 
eutrophication, sediment input and other light-limiting stressors. Inte
grating these thresholds into the real-world management of seagrass 
systems will give managers a significant advantage over traditional 
seagrass monitoring strategies that are based on the assumption of linear 
relationships between human pressures and habitat structure and 
function. These thresholds have the potential to be used as early warning 
indicators that signal a system approaching collapse (Ceccherelli et al., 
2018). Some of these traits have already proven to be useful indicators of 
ecosystem condition. For example, the total non-structural carbohydrate 
content in storage tissues is a recognised plant-fitness trait and a robust 
bioindicator of light limitation in seagrasses (Mc Mahon et al., 2013; 
Soissons et al., 2016). This fitness-related trait can potentially help to 
predict sudden seagrass population declines under increasing shading 
conditions and likely under other environmental changes (Baruah et al., 
2019). In addition, these results could inform process-based models to 
develop ecological forecasting tools for seagrass ecosystems and to 
predict ecosystem resilience (Adams et al., 2020). Mechanistic models 
could also be useful to forecast ecological responses to cumulative 
stressors and to test how present and future scenarios of climate change 
modify the resilience and thresholds of ecosystem collapse in seagrass 
meadows. Armed with this information, local managers could work to 
improve water quality with upstream management, coastal protection 

or other water quality measures long before ecosystems decline. 
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